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Abstract: This paper describes how to take advantage of the replacement of an intensity 
camera with a polarization camera in a standard differential interference contrast (DIC) 
microscope. Using a polarization camera enables snapshot quantitative phase analysis so that 
real-time imaging of living transparent tissues become possible. Using our method, we 
quantify the phase measurement accuracy using a phantom consisting of glass beads 
embedded in lacquer. In order to demonstrate these advantages, we image the pumping heart 
and blood flow in a living medaka egg. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Differential interference contrast (DIC) microscopy [1] is a widely used method for observing 
tissues or cells in vivo without the need for applying florescent dyes. DIC microscopy allows 
analysis of detailed structures, high sensitivity in detecting phase information, and has a 
strong capability for optical sectioning [2]. Many researchers have proposed methods for the 
quantitative phase measurement of volumes using transmission DIC microscopy [3,4], and 
surface profile measurement using reflection DIC microscopy [5–7]. Ishiwata et al. proposed 
a retardation-modulated DIC (RM-DIC) microscope for quantitative measurement of planar 
microstructure at a given focal depth [8,9], and to measure 3D phase volume by optical 
sectioning [2]. However, these quantitative reconstruction methods [2–9] can require 
significant computation for each phase image because of the need to acquire multiple images 
for use with the phase shift technique. 

We show below that it is possible to obtain a quantitative phase image from a single raw 
frame, so that real-time video is possible for a DIC microscope using a polarization camera – 
a camera for which a micropolarizer array has been attached to a detector array [10–12]. 
While Fabre et al. have previously shown how to make use of a photonic crystal polarization 
camera [11] with a DIC microscope, they used scanning to collect multiple raw images in 
order to obtain a single phase image [13]. Thus, they were unable to demonstrate video 
imaging of dynamic phase objects. We demonstrate that it is possible to capture 
measurements at the native frame rate of the polarization camera, and that through 
deconvolution with the DIC system’s inverse MTF, we can convert the raw intensity data into 
quantitative phase images. 

In Section 2 below, we introduce how to calculate a quantitative phase image from one 
image captured by a polarization camera. In Section 3, we evaluate the proposed method for 
getting accurate phase measurement using a sample of glass beads inside a lacquer medium. 
In order to demonstrate the advantages of our method, we also show a video-rate phase 
measurement of rapid motion in a living medaka egg. 
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vector, we also need to convert the complex conjugate in Eq. (1) to an adjoint operator (i.e. 
conjugate transpose), producing 
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Here M(0), M(fx), m0(fx), and md(fx) describe the illumination profiles in terms of the two 
sheared beams illuminating the sample. We see that the intensity distribution I(x,θ) has five 
terms comprising three components (a), (b), and (c). The background component (a) consists 
of M(0) plus an integral that evaluates to a constant – together these represent the DC part of 
the illumination and object transmission – plus an integral that expresses the illumination 
profile due to the pair of illumination beams sheared by separation Δ. The second component 
(b) is the primary item of interest – the object phase gradient given by taking the difference 
between the two shifted versions of the object phase. The difference operation is due to the 
Fourier transform of the sine function being a pair of Dirac delta functions of opposite sign. 
Finally, the third component (c) is the transmitted intensity profile dependent on the squared 
object phase. 

If we approximate the object as having a weak phase variation, the convolved phase
*( ) ( )x xf fΦ Φ⊗ , the absolute value 

2*( ) ( ) ( )x x xf f fΦ Φ Φ=  and the squared object phase 
*( ) ( )x xf fΦ Φ −  all become approximately zero. As a result, the intensity images (Eq. (8)) 

captured by the polarization camera depend only on the DC part of background M(0) and the 
object phase gradient component (b). Thus, in the weak phase variation approximation Eq. (8) 
becomes: 
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where 
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represents the Modulation Transfer Function (MTF) of the DIC microscope. 
The phase distribution φ(x) of the observed object can be obtained using the MTF(fx) of 

the DIC microscope with 
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determine how well the system can estimate quantitative phase using the proposed analysis. 
The diameter d of the glass beads is 2 μm. Figure 6 shows the measurement results of the 
differential phase on a region of our sample before the inverse Fourier transform (calculated 
by Eq. (11), shown on the left side of the figure) and the quantitative phase after inverse 
Fourier transform (calculated by Eq. (14), shown on the right side of the figure). The image 
shown in the figure is sampled at 0.25 μm / pixel 

We can see the well-known halo artifact indicated by negative phase values on both sides 
of the glass beads. The theoretical curve is calculated from the difference of refractive index 
(n1 − n2 = 0.02), the bead diameter (d = 2 μm), and the wavelength (650 nm). 

The halo artifact visible in Fig. 6(f) is caused by insufficient spatial coherence of the 
illumination system. Nguyen et al. have shown that they were able to successfully remove the 
artifact by using an external interferometric unit [17], but our system currently does not have 
a similar hardware setup allowing for removal of the halo. We obtain an absolute maximum 
phase difference of 0.05 rad between our measurement curve and theoretical curve at the 
glass bead area without the halo artifact. 

 

Fig. 6. The measurement results of the glass beads (n1 = 1.56) embedded in lacquer (n2 = 1.54). 
We use an NA = 0.4 objective lens, (a), (c) and (e) are the differential phase results, while (b), 
(d), and (f) are the quantitative phase results. (c) and (d) are the enlarged images of red square 
of (a) and (b), respectively. (e) and (f) are cross-sections taken at the center of the glass beads 
(red dished lines of (c) and (d)). The black line of (f) is the calculated theoretical value. 

4. Video-rate quantitative analysis result 

In biology, zebrafish and medaka are often used for investigating the tissue formation process 
and for the observation of abnormal and healthy cells. Therefore, in order to demonstrate 
video-rate quantitative phase measurement, we measure a living medaka egg (5~6 days after 
spawning) (see Fig. 7). Figure 8 shows a 20 Hz video measurement of a medaka heart’s 
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